
Look Ma,
Backtracking without Recursion

Tom Verhoeff
Netherlands

Insights
• How to discover backtracking naturally (when not even looking for it)

• How to implement backtracking without recursion (in traditional sense)

• Also no loop+explicit stack, but using self-application

• Connect functional and object-oriented programming

• OO design pattern for partial function application

• Power & dangers of polymorphism; need for contractual reasoning

2

Article Overview by Section
2. Simplified binary puzzles and reasoning strategies

• Strategy combinators (with strategy parameters): repeat to fixpoint, pair

• Self-applied strategy

3. Design in functional terms, implement in object-oriented language

• It really works, with a twist (Java and Python code provided in Git repo)

4. Minimal example of cyclic behavior without loop or recursion

3

Self-Application

Self-Application Gone Wrong
• Lambda Calculus: variables, lambda abstractions, and applications

• λ x. x x is the (nameless) function of variable x, which applies x to x

• One computational rule: substitution (beta reduction)

• (λ x. T) U β-reduces to T[x := U], i.e. T with free x's replaced by U

• (λ x. x x)(λ x. x x) β-reduces to …

• (λ x. x x)(λ x. x x) i.e. an infinite loop

Self-Application in C++14
• λ x. x x

• [](auto x) -> int { return x(x); } // generic lambda expression

• (λ x. x x)(λ x. x x)

• [](auto x) -> int { return x(x); }  
 ([](auto x) -> int { return x(x); }) // segmentation fault

• Compare x to DNA

• Treated as code: transcribe (execute), cf. the call of x in x(x)

• Treated as data: replicate (copy), cf. the argument x in x(x)

Self-Application Put to Good Use
• cout <<  
 [](auto dna, int n) -> long {  
 return (n == 0) ? 1 : n * dna(dna, n - 1); 
 }([](auto dna, int n) -> long {  
 return (n == 0) ? 1 : n * dna(dna, n - 1); 
 },  
 10  
);

• Blue: code executed (DNA transcribed)

• Orange: data copied (DNA replicated)

Lambdas – Closures – Objects

• class prefac {  
 public:  
 virtual long operator()(prefac * dna, int n) {  
 return (n == 0) ? 1 : n * (*dna)(dna, n - 1); 
 }  
};

• prefac * pf = new prefac();  
std::cout << (*pf)(pf, 3);

Polymorphic:
could be from

subclass

Subclass can
override

operator()

Contractual
reasoning needed

This creates
a cycle

(*pf)(dna, n) == n!
if

• n >= 0, and

• n > 0 implies 
 (*dna)(dna, n-1) == (n-1)!

pf satisfies its contract, by induction

so, (*pf)(pf, n) == n!

 No recursion!

Conclusion

My Related Articles
• “A Master Class on Recursion”, in LNCS Vol. 11011, 2018.

• The basics of recursion, and more examples of self-application

• “An Enticing Environment for Programming”, in IOI Journal, Vol. 4, 2010.

• Tom's JavaScript Machine, with self-referential programming challenge

• From Callbacks to Design Patterns, on ResearchGate.net, 2012.

• OO programming techniques discovered from a functional view

Thanks!
Questions?

Tom Verhoeff
Netherlands

