gn'n@apore

(21

| ook Ma,
Backtracking without Recursion

Tom Verhoeff
Netherlands

33RP INTERNATIONAL
OLYMPIAD IN INFORMATICS

SINGAPORE

EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Insights

How to discover backtracking naturally (when not even looking for it)
How to implement backtracking without recursion (in traditional sense)
* Also no loop+explicit stack, but using self-application

Connect functional and object-oriented programming

OO design pattern for partial function application

Power & dangers of polymorphism; need for contractual reasoning

Article Overview by Section

2. Simplified binary puzzles and reasoning strategies

o Strategy combinatdq .!

» Self-applied strategy |

4. Minimal example of

Self-Application

Self-Application Gone Wrong

« Lambda Calculus: variables, lambda abstractions, and applications
* AX.X X Isthe (hameless) function of variable x, which applies x to x
 One computational rule: substitution (beta reduction)
e (AX.T)U [-reducesto T[x:= U], i.e. T with free x's replaced by U
e (AX.XxX)(AX.xXx) B-reduces to ...

e (AX. X X)(A X. x x) i.e. an infinite loop

Self-Application in C++14

e AX.XX

e [] (auto x) -> int { return x(x); } // generic lambda expression

(A X. X X)(A X. X x)

e [] (auto x) -> int { return x(x); }
() // segmentation fault

» Compare x to DNA
* Treated as code: transcribe (execute), cf. the call of x in x(x)

* Treated as data: replicate (copy), cf. the argument x in x(x)

Self-Application Put to Good Use

* cout <<
[] (auto dna, int n) -> long {
return (n == 0) ? 1 : n * dna(dna, n - 1);
}(
10

* Blue: code executed (DNA transcribed)

o . data copied (DNA replicated)

Lambdas - Closures — Objects

Polymorphic: Subclass can
could be from override
e class prefac { subclass operator()
public:
virtual long operator () (prefac * dna, int n) {
return (n == 0) 2 1 : n * (*dna) (dna, n - 1);
},} Contractual f) (dna, n) == n.

reasoning needed

n >= 0, and No recursion!

n > 0 Implies

e prefac = new pref
std: :cout < (*pf) (pf

(*dna) (dna,

This creates

a cycle

Conclusion

My Related Articles

e “A Master Class on Recursion”, in LNCS Vol. 11011, 2018.

 The basics of recursion, and more examples of self-application

 “An Enticing Environment for Programming”, in 10l Journal, Vol. 4, 2010.

 Jom's JavaScript Machine, with self-referential programming challenge

 From Callbacks to Design Patterns, on ResearchGate.net, 2012.

OO programming techniques discovered from a functional view

Qngapore

(21

Thanks!
Questions?

Tom Verhoeff
Netherlands

EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

33RP INTERNATIONAL
OLYMPIAD IN INFORMATICS

SINGAPORE

